Description

Superior foam quality and never before reached throw ranges: that’s FLASH CAFS. Highly efficient compressed air foam (CAFS) is produced by mixing compressed air with a premix of water and foam agent in the FLASH CAFS unit. The compressed air is provided by a set of compressed air bottles. This way the system does not need any external energy. It is therefore completely autonomous.

For stationary fire extinguishing systems CAFS can be used for the protection of big buildings (e.g. storage areas, aircraft hangars), special machines (paint shops, coal power plants etc.) and flammable materials (e.g. plastic, waste).

Advantages

Wide range of applications
- CAFS release via nozzles, turrets, or hand line nozzle
- Consistent spread of CAFS on the burning material
- Throw ranges up to 80 m / 260 ft (for turrets)
- Precise extinguishing
- Great radius of action

Controlled expansion
- Smoke cannot influence foam expansion
- Immediate achievement of foam performance

Simple retrofitting
- Mechanical system
- Completely autonomous
- Compact design

CAFS - Innovative fire fighting
- Uniformly high foam quality
- High extinguishing efficiency
- Sustainable cooling
- Small application rates
- Enhanced protection against back-burning
- Fast oxygen deprivation
- Minimization of water damages
- CAFS foam adheres to hot surfaces

Sufficient air supply
- With a 50 l / 300 bar bottle of compressed air approx. 3,000 l of premix (water mixed with extinguishing agent) can be converted into foam. The amount of compressed air necessary depends on the available amount of extinguishing agent.
- Refillable standard propellants
FLASH CAFS AR60 - AR480

CAFS for Stationary Extinguishing Systems

Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>FLASH CAFS AR60</th>
<th>FLASH CAFS AR100</th>
<th>FLASH CAFS AR200</th>
<th>FLASH CAFS AR480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(for CAFS, expansion ratio = 8)</td>
<td>750 l/min at 10 bar</td>
<td>1,250 l/min at 10 bar</td>
<td>2,500 l/min at 10 bar</td>
<td>6,000 l/min at 10 bar</td>
</tr>
<tr>
<td>Propellant</td>
<td>disp. x 50 l / 300 bar</td>
</tr>
<tr>
<td>Mixing Chamber</td>
<td>MK600</td>
<td>MK1000</td>
<td>MK2000</td>
<td>MK5000</td>
</tr>
<tr>
<td>Flow Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(water-foam-mixture at 1 bar pressure loss in the central unit)</td>
<td>900 l/min at 10 bar</td>
<td>1,500 l/min at 10 bar</td>
<td>3,000 l/min at 10 bar</td>
<td>7,200 l/min at 10 bar</td>
</tr>
<tr>
<td>Operating Pressure (max.)</td>
<td>16 bar</td>
<td>16 bar</td>
<td>16 bar</td>
<td>16 bar</td>
</tr>
<tr>
<td>Expansion Ratio Variable</td>
<td>4-15</td>
<td>4-15</td>
<td>4-15</td>
<td>4-15</td>
</tr>
<tr>
<td>CAF Amount</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(at expansion rate = 8)</td>
<td>approx. 6,000 l/min</td>
<td>approx. 10,000 l/min</td>
<td>approx. 20,000 l/min</td>
<td>approx. 48,000 l/min</td>
</tr>
<tr>
<td>Dimensions of Central Unit</td>
<td>L x W x H (approx.)</td>
</tr>
<tr>
<td></td>
<td>510 x 320 x 445 mm</td>
<td>560 x 325 x 450 mm</td>
<td>455 x 300 x 485 mm</td>
<td>530 x 435 x 485 mm</td>
</tr>
<tr>
<td></td>
<td>20” x 13” x 18”</td>
<td>20” x 13” x 18”</td>
<td>18” x 12” x 19”</td>
<td>21” x 17” x 19”</td>
</tr>
</tbody>
</table>

Contact

Rosenbauer International AG
Paschinger Straße 90
4060 Leonding, Austria
Tel.: +43 732 6794-0
Fax: +43 732 6794-7500
stationary@rosenbauer.com

group

Text and illustrations are not binding. The illustrations may show optional extras only available at extra charge. Rosenbauer retains the right to alter specifications and dimensions given herein without prior notice. FLASH CAFS_EN_2012_05